1. Draw acetyl-CoA (you can abbreviate CoA).
2. Draw oxaloacetate.
3. Draw α-ketoglutarate.
4. How many total (all together) C-C and C-H bonds are present in one acetyl-CoA (don't worry about the CoA portion) and one oxaloacetate?
5. How many total (all together) $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds are present in one α ketoglutarate?
6. What is the numerical difference between your answers for \#4 and \#5?
7. How many redox reactions occur in the pathway of one acetyl-CoA and one oxaloacetate becoming one α-ketoglutarate? List the steps.
